Примеры решения задач по статике. Определение реакции опор с моментом

  • Дата: 26.11.2023

Рассмотрен порядок решения задач на определение реакций опор балок. Приводится пример решения задачи и проверка правильности определения реакций. Приводится решение задачи вторым способом.

Содержание

Порядок решения задач на определение реакций опор балок

  • Выбираем систему координат. Можно ось x направить вдоль балки, ось y - вертикально вверх. Ось z будет направлена перпендикулярно плоскости рисунка, на нас. Центр системы координат можно выбрать в одной из точек опор балки.
  • Если есть распределенная нагрузка, то заменяем ее равнодействующей силой. Величина этой силы равна площади эпюры. Точка приложения силы находится в центре тяжести эпюры. Так если нагрузка q равномерно распределена на отрезке AB , то ее равнодействующая имеет величину Q = q·| AB| и приложена посередине отрезка AB .
  • Составляем уравнения равновесия для действующих сил. В общем случае они имеют вид:
    .
    Спроектируем это векторное уравнение на оси координат. Тогда сумма проекций сил на каждую из осей координат равна нулю:
    (1) .
    Находим проекции сил на оси координат и составляем уравнения (1). Для плоской системы сил, последнее уравнение, с проекциями на ось z , не используется.
  • Составляем уравнения равновесия для моментов сил. Сумма моментов сил относительно произвольной оси A′A′′ равна нулю:
    (2) .
    Чтобы составить это уравнение, мы должны выбрать ось, относительно которой вычисляются моменты. Ось лучше выбрать так, чтобы сделать вычисления более простыми. Чаще всего оси выбирают так, чтобы они проходили через точки опор балки, перпендикулярно плоскости рисунка.
  • Решаем уравнения и получаем значения реакций опор.
  • Делаем проверку результата. В качестве проверки можно выбрать какую-нибудь ось, перпендикулярную плоскости рисунка, и относительно нее подсчитать сумму моментов сил, действующих на балку, включая найденные реакции опор. Сумма моментов должна равняться нулю.

Пример решения задачи на определение реакций опор балки

Условие задачи.

Жесткая балка, линейные размеры которой указаны на рисунке 1, закреплена в точках А и В. На балку действуют пара сил с моментом М, равномерно распределенная нагрузка интенсивностью q и две силы P и G, место приложения которых показано на рисунке.
Определить реакции опор балки в точках A и В, вызываемые указанными нагрузками.

Дано:
P = 20,2 Н ; G = 22,6 Н ; q = 2 Н/м ; M = 42,8 Н·м ; a = 1,3 м ; b = 3,9 м ; α = 45° ;

Решение задачи

Проводим оси x и y системы координат. Начало системы координат поместим в точку A . Ось x направим горизонтально, вдоль балки. Ось y - вертикально. Ось z перпендикулярна плоскости рисунка и направлена на нас. На рисунке она не указана.

Силы, действующие на балку.

Отбрасываем опоры и заменяем их силами реакций.
В шарнире A , разложим силу реакции на составляющие и вдоль осей координат.
Реакция , в подвижной опоре на катках, направлена вертикально. Предполагаемые направления реакций опор выбираем по своему усмотрению, наугад. Если ошибемся с направлением реакции, то получим отрицательное значение, что будет говорить о том, что соответствующая сила реакции направлена в противоположную сторону.

Заменим равномерно распределенную нагрузку q равнодействующей . Абсолютное значение равнодействующей равно площади эпюры:
Н .
Точка приложения равнодействующей находится в центре тяжести эпюры. Поскольку эпюра представляет собой прямоугольник, то ее центр тяжести находится в точке C - посередине отрезка AD :
AC = CD = b/2 = 1,95 м .

Уравнения равновесия для сил

Определяем проекции сил на оси координат.

Разложим силу на составляющие вдоль координатных осей:
.
Абсолютные значения составляющих:
.
Вектор параллелен оси x и направлен в противоположную от нее сторону. Вектор параллелен оси y и также направлен в противоположную сторону. Поэтому проекции силы на оси координат имеют следующие значения:
.

Остальные силы параллельны осям координат. Поэтому они имеют следующие проекции:
;
;
;
;
.

Составляем уравнения равновесия для сил.
Сумма проекций всех сил на ось x равна нулю:
;
;
;
(П1) .

Сумма проекций всех сил на ось y равна нулю:
;
;
;
(П2) .

Уравнения равновесия для моментов

Итак, мы уже составили два уравнения для сил: (П1) и (П2). Но в них есть три неизвестные величины: , и . Чтобы их определить, нам нужно составить еще одно уравнение.

Составим уравнение равновесия для моментов сил. Для этого нам нужно выбрать ось, относительно которой мы будем вычислять моменты. В качестве такой оси возьмем ось, проходящую через точку A , перпендикулярно плоскости рисунка. За положительное направление выберем то, которое направлено на нас. Тогда, по правилу правого винта, положительным направлением закручивания будет направление против часовой стрелки.

Находим моменты сил относительно выбранной оси.
Силы , и пересекают ось. Поэтому их моменты равны нулю:
; ; .

Сила перпендикулярна плечу AB . Ее момент:
.
Поскольку, относительно оси A , сила направлена против часовой стрелки, то ее момент положительный.

Сила перпендикулярна плечу AK . Поскольку, относительно оси A , эта сила направлена по часовой стрелки, то ее момент имеет отрицательное значение:
.

Аналогичным способом находим моменты остальных сил:
;
.
Момент от пары сил M не зависит от точек приложения сил, входящих в пару:
.

Составляем уравнение равновесия. Сумма моментов сил относительно оси A равна нулю:
;

;
;
(П3) .

Решение уравнений равновесия

Итак, для трех неизвестных величин, мы получили три уравнения:
(П1) .
(П2) .
(П3) .

Решаем эти уравнения. Вычисляем расстояния.
м;
м;
м;
м.

Из уравнения (П1) находим:
Н.
Из уравнения (П3) находим:

Н.
Из уравнения (П2) имеем:
Н.
Абсолютное значение реакции опоры в точке A :
Н.

Проверка правильности решения

Чтобы проверить, правильно ли мы определили реакции опор балки, найдем сумму моментов сил относительно другой оси. Если мы нашли реакции правильно, то она должна равняться нулю.

Возьмем ось, проходящую через точку E . Вычисляем сумму моментов сил относительно этой оси:

.
Найдем погрешность вычисления суммы моментов. Найденные силы мы округлили до двух знаков после запятой. То есть погрешность определения реакций опор составляет 0,01 Н . Расстояния, по порядку величины, примерно равны 10 м. Тогда погрешность вычисления суммы моментов составляет около 10·0,01 = 0,1 Нм . Мы получили значение -0,03 Нм . Эта величина отличается от нуля не более, чем на величину погрешности. То есть, с учетом погрешности вычислений, сумма моментов относительно другой оси равна нулю. Значит решение правильное, силы реакций найдены верно.

Второй способ решения

Первым способом мы составили два уравнения для сил и одно - для моментов. Задачу можно решить другим способом, составив два уравнения для моментов и одно для сил.

Воспользуемся тем, что сумма моментов сил равна нулю относительно любой оси. Возьмем вторую ось, которая проходит через точку B перпендикулярно плоскости рисунка. Сумма моментов сил относительно этой равна нулю:
.
Вычисляем моменты сил относительно оси B .
; ; ;
;
;
;
;
.

Сумма моментов сил относительно оси B равна нулю:
;

;
;
(П4) ;

Итак, вторым способом, мы также имеем три уравнения:
(П1) .
(П3) ;
(П4) .

Здесь каждое уравнение содержит только одну неизвестную величину. Реакции и определяются из тех же уравнений, что и ранее. Находим силу из уравнения (П4):

Н.

Значение реакции совпало со значением, полученным первым способом из уравнения (П2).

1. Какая система сил является системой сходящихся сил?

2. Сформулируйте условие равновесия системы сходящихся сил в аналитической и геометрической формах.

3. Сформулируйте правила построения силового многоугольника.

4. Приведите формулу для определения равнодействующей системы сходящихся сил.

5. В каком случае проекция силы равна 0?

6. В каком случае проекция силы положительна?

Практическая работа

Тема: Определение реакций опор для балочных систем

Цель работы: Закрепить теоретические знания и умения определять реакции в опорах балочных систем

Образовательные результаты, соответствующие ФГОС:

ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество

ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.

ПК 3.1. Конструировать элементы систем водоснабжения и водоотведения, отопления, вентиляции и кондиционирования воздуха.

ПК 3.2. Выполнять основы расчета систем водоснабжения и водоотведения, отопления, вентиляции и кондиционирования воздуха.

Обучающийся должен знать основные понятия и законы механики твердого тела.

Форма работы - индивидуальная.

Характер работы - частично-поисковый.

Краткие теоретические и справочно-информационные материалы по теме:

Очень часто в машинах и конструкциях встречаются тела удлиненной формы, называемые балками (или балочными системами). Балки в основном предназначены для восприятия поперечных нагрузок. Балки имеют специальные опорные устройства для сопряжения их с другими элементами и передачи на них усилий.


Неизвестные числовые значения реакций опорных устройств балки определяются через систему уравнений равновесия.

Уравнения равновесия произвольной плоской системы сил могут быть представлены в трех формах. Первая (основная форма этих уравнений):

https://pandia.ru/text/80/184/images/image022_18.jpg" width="316" height="43 src=">

Это вторая форма уравнений равновесия.

Третья форма уравнений равновесия представляет собой равенство нулю сумм моментов относительно двух произвольных точек А и В и равенство нулю суммы проекций на некоторую ось х:

https://pandia.ru/text/80/184/images/image024_12.jpg" width="185" height="26 src=">

Вторая и третья формы уравнений равновесия для плоской системы параллельных сил примут одинаковый вид:

https://pandia.ru/text/80/184/images/image026_16.gif" width="58" height="23">или Учебные пособия" href="/text/category/uchebnie_posobiya/" rel="bookmark">учебное пособие / . - 2-е изд. - М.: ФОРУМ: ИНФРА-М, 2012.

Проверка знаний и умений (необходимых для выполнения практической работы)

Задание 1.

Задание 2.

1. Заменить распределенную нагрузку ее равнодействующей и указать точку ее приложения.

2. Освободить балку от связей, заменив их реакциями.

3. Выбрать систему уравнений равновесия.

4. Решить уравнения равновесия.

5. Выполнить проверку решения.

Примеры расчета :

Задание 1. Определить величины реакций в заделке. Провести проверку правильности решения.

https://pandia.ru/text/80/184/images/image032_11.gif" width="247 height=19" height="19">

2. Освобождаем балку АВ от связей, отбрасываем заделку в точке А и заменяем действие заделки возможными реакциями, возникающими в опоре – реактивным моментом МА и составляющими реакциями и . Получили плоскую систему параллельно расположенных сил, значит .

3. Выбираем систему уравнений равновесия:


4. Решение начинаем с крайней левой точки.

https://pandia.ru/text/80/184/images/image038_12.gif" width="205" height="25 src=">

В уравнении учитываем все моменты, которые создаются действующими силами находящимися на расстоянии относительно точки А.(Реакции, находящиеся в точке А, в уравнении не учитываются, так как они не создают плеча с точкой).

https://pandia.ru/text/80/184/images/image041_11.gif" width="516" height="45">

Решение выполнено, верно.

Задание 2. Определить величины реакций в шарнирных опорах балки. Провести проверку правильности решения.

На опорах балок возникают реакции, с определения которых следует начинать решения всех задач по расчету изгиба.

Реакции опор определяются из уравнений равновесия (статики), которые можно представить в двух различных вариантах:

1) в виде суммы проекций всех сил на оси х и у , а также суммы моментов сил (включая реакции) относительно любой точки по оси балки:

2) в виде суммы всех сил на одну из координатных осей х или у и двух сумм моментов сил (включая реакции) относительно двух точек, лежащих на оси балки:

Выбор того или оного варианта составления уравнений равновесия, а также выбор точек по направлению координатных осей, используемых при составлении этих уравнений, производится в каждом конкретном случае с таким расчетом, чтобы по возможности не производить совместное решение уравнений. Для проверки правильности определения опорных реакций полученные их величины рекомендуется подставлять в какое-либо уравнение равновесия, не использованное ранее.

При определении реакций их направления можно выбирать произвольно. Если же реакции в расчете оказались отрицательными, то это означает, что их направление выбрано неправильно. В этом случае на расчетной схеме первоначальное направление реакций перечеркивают и указывают их обратное направление. В последующих расчетах величины реакций считаются положительными.

Однако можно заранее предугадать правильное направление реакций на основании мысленно представленной упругой линии балки после ее нагружения внешними усилиями (рис 8.5): при «отрыве» балки от опоры (опора А ) реакция R А имеет направление к опоре; при «вдавливании» балки в опору (опора В ) реакция R В имеет направление от опоры.

Рисунок 8.5 – К определению направлению реакций

Рассмотрим типичные случаи определения реакций для простейших видов нагрузок.

Если на балку действует интенсивностью q , как показано на рис.8.6, то при определении опорных реакций нагрузка заменяется ее равнодействующей Р , равной произведению интенсивности нагрузки q на длину участка ее действия l

Примером сплошной равномерно распределенной нагрузки может служить собственный вес балки или часто расположенные нагрузки на участке ее длины.

Рисунок 8.6 – Случай равномерно распределенной нагрузки на балку

Точка приложения сплошной равномерно распределенной нагрузки q лежит посредине того участка, на который она действует; при треугольном законе действия распределенной нагрузки равнодействующая прикладывается по ее центру тяжести.

Размерность интенсивности нагрузки q выражается обычно в кН/м или кН/см.

Рассмотрим последовательность определения опорных реакций для случая нагрузки балки, показанной на рис.8.7:

1. На расчетной схеме балки показывается принятое направление реакций R А и R В , возникающих на опорах. Поскольку внешняя нагрузка действует в вертикальной плоскости перпендикулярно оси балки, то горизонтальная реакция на шарнирно-неподвижной опоре А отсутствует.

2. Поскольку в данном случае неизвестных реакций две (R А и R В ), то в качестве равновесия для определения реакций принимается два уравнения

При составлении этих условий равновесия следует принять правило знаков для моментов сил, включая реакции. Обычно принимается такое привило для внешних (активных) знаков: если моменты от сил направлены по часовой стрелке, то они считаются положительными.

Тогда первое условие равновесия (8.4) приводит к уравнению относительно неизвестной реакции R В (см. рис.8.6)

Реакция получалась положительной, следовательно ее направление принято правильным.

Аналогично используем второе условие равновесия (8.4), приводящее к уравнению относительно второй реакции R А :

Снова реакция оказалась положительной, следовательно ее первоначально направление на расчетной схеме выбрано правильно.

3. Правильность определения величин реакций проверяем из использования еще одного, ранее не использованного, условия равновесия

При этом проекции сил, совпадающих с направлением оси у , считаются положительными, а направленных в обратную сторону – отрицательными.

Тогда на основании использования условия (8.5) имеем:

Полученное тождество (0=0) свидетельствует о правильности определения величин реакций в расчете изгиба балки.

Рассмотрим другой типичный случай нагрузки в виде внецентренно расположенной сосредоточенной силы Р по длине балки l (рис.8.7).

Рисунок 8.7 – Случай нагрузки балки сосредоточенной силой

1. Покажем на расчетной схеме реакции R А и R В . Они направлены, как было указано выше, навстречу нагрузке.

2. Реакции определим из условий равновесия:

Реакции получились положительными, следовательно, их первоначальное направление на расчетной схеме выбрано верно.

Заметим заодно, что реакция на опоре В оказалась больше, чем реакция на опоре А : R В ˃R А . Это следует из того, что сила Р находится ближе к опоре В , а значит и нагружает ее больше.

3. Проверка:

Полученное тождество свидетельствует о правильности определения реакции.

Рассмотрим еще один случай нагрузки балки в пролете внешним сосредоточенным моментом (рис. 8.8), что имеет место в практических расчетах изгиба.

𝔐


Рисунок 8.8 – Случай нагружения балки сосредоточенным моментом

1. Покажем на расчетной схеме предполагаемое направление реакций (вначале мы не знаем, правильно ли приняты такие направления).

2. Реакции определяем из уравнений равновесия:

Реакция получилась положительной, следовательно, ее первоначальное положение выбрано верно.

Реакция оказалась отрицательной, а это означает, что ее направление выбрано неправильно. Поэтому на расчетной схеме зачеркиваем первоначально (ошибочно) принятое направление R А и показываем обратное (истинное) направление (см.ри.8.8). В дальнейших расчетах считаем реакцию R А с правильным направлением положительной.

3. Проверка:

Использованное уравнение равновесия для балки выполняется, а это означает правильность определения реакций и их направления.

Если балка при поперечном изгибе имеет такие опоры, что общее число реакций, возникающих на опорах, не превышают двух, то реакции всегда могут быть определены из двух уравнений равновесия типа (8.2). Такие балки, реакции которых определяются из этих уравнений статики, называются статически определимыми балками. Эти балки могут быть таких простейших видов (рис. 8.9):

Рисунок 8.9 – Статически определимые балки

1) балка с одним жестко защемленным и другим свободным концом, иначе консоль (рис.8.9, а ); 2) шарнирно-опертые балки (рис.8.9, б и 8.9, в ).

Балки, у которых общее число реакций опор больше числа уравнений равновесия, называются статически неопределимыми (расчет их изгиба будет рассмотрен в п. 8.10). Для таких балок реакции опор определяются из совместного решения уравнений статики и условий совместимости деформаций.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО СТАТИКЕ

Пример 1. Определить реакции опор горизонтальной балки от заданной нагрузки.

Дано:

Схема балки (рис. 1).

P = 20 кН, G = 10 кН, М = 4 кНм, q = 2 кН/м, a =2 м, b =3 м, .

___________________________________

А и В .

Рис. 1

Решение:

Рассмотрим равновесие балки АВ (рис. 2).

К балке приложена уравновешенная система сил, состоящая из активных сил и сил реакции.

Активные (заданные) силы:

Пара сил с моментом М , где

Сосредоточенная сила, заменяющая действие распределенной вдоль отрезка АС нагрузки интенсивностью q .

Величина

Линия действия силы проходит через середину отрезка АС .

Силы реакции (неизвестные силы):

Заменяет действие отброшенного подвижного шарнира (опора А ).

Реакция перпендикулярна поверхности, на которую опираются катки подвижного шарнира.

Заменяют действие отброшенного неподвижного шарнира (опора В ).

Составляющие реакции , направление которой заранее неизвестно.

Расчетная схема

Рис. 2

Для полученной плоской произвольной системы сил можно составить три уравнения равновесия:

Задача является статически определимой, так как число неизвестных сил (,,) - три- равно числу уравнений равновесия.

Поместим систему координат XY в точку А , ось AX направим вдоль балки. За центр моментов всех сил выберем точку В .

Составим уравнения равновесия:

Решая систему уравнений, найдем ,,.

Определив,, найдем величину силы реакции неподвижного шарнира

В целях проверки составим уравнение

Если в результате подстановки в правую часть этого равенства данных задачи и найденных сил реакций получим нуль, то задача решена - верно.

Реакции найдены верно. Неточность объясняется округлением при вычислении .

Ответ:

Пример 2. Для заданной плоской рамы определить реакции опор.

Дано:

Схема рамы рис.3

P = 20 кН, G = 10 кН, М = 4 кНм, q = 2 кН/м, a =2 м, b =3 м, .

______________________________

Определить реакции опор рамы.

Рис. 3

Решение:

Рассмотрим равновесие жесткой рамы АВЕС (рис. 4).

Расчетная схема

Рис. 4

Система сил приложенных к раме состоит из активных сил и сил реакций.

Активные силы:

Пара сил с моментом , , .

, заменяют действие распределенной нагрузки на отрезках ВД и ДЕ .

Линия действия силы проходит на расстоянии от точки В .

Линия действия силы проходит через середину отрезка ДЕ.

Силы реакции:

Заменяют действие жесткого защемления, которое ограничивает любое перемещение рамы в плоскости чертежа.

К раме приложена плоская произвольная система сил. Для нее можем составить три уравнения равновесия:

, ,

Задача является статистически определимой, так как число неизвестных тоже три - , , .

Составим уравнения равновесия, выбрав за центр моментов точку А, так как ее пересекают наибольшее число неизвестных сил.

Решая систему уравнений, найдем , , .

Для проверки полученных результатов составим уравнение моментов вокруг точки С.

Подставляя все значения, получим

Реакции найдены верно.

Ответ:

Пример 3 . Для заданной плоской рамы определить реакции опор.

Дано: вариант расчетной схемы (рис. 5);

Р 1 = 8 кН; Р 2 = 10 кН; q = 12 кН/м; М = 16 кНм; l = 0,1 м.

Определить реакции в опорах А и В .


Рис.5

Решение . Заменяем действие связей (опор) реакциями. Число, вид (сила или пара сил с моментом), а также направление реакций зависят от вида опор. В плоской статике для каждой опоры в отдельности можно проверить, какие направления движения запрещает телу данная опора. Проверяют два взаимно перпендикулярных смещения тела относительно опорной точки (А или В ) и поворот тела в плоскости действия внешних сил относительно этих точек. Если запрещено смещение, то будет реакция в виде силы по этому направлению, а если запрещен поворот, то будет реакция в виде пары сил с моментом (М А или М В).

Первоначально реакции можно выбирать в любую сторону. После определения значения реакции знак «плюс» у него будет говорить о том, что направление в эту сторону верное, а знак «минус» – о том, что правильное направление реакции противоположно выбранному (например, не вниз, а вверх для силы или по часовой стрелке, а не против неё для момента пары сил).

Исходя из вышесказанного, показаны реакции на рис. 5. В опоре А их две, т. к. опора запрещает перемещение по горизонтали и вертикали, а поворот вокруг точки А - разрешает. Момент М А не возникает, т. к. эта шарнирная опора не запрещает поворот телу вокруг точки А . В точке В одна реакция, т. к. запрещено перемещение только в одном направлении (вдоль невесомого рычага ВВ ¢ ).

заменяется эквивалентной сосредоточенной силой . Линия действия её проходит через центр тяжести эпюры (для прямоугольной эпюры центр тяжести на пересечении диагоналей, поэтому сила Q проходит через середину отрезка, на который действует q ). Величина силы Q равна площади эпюры, то есть

Затем необходимо выбрать оси координат x и y и разложить все силы и реакции не параллельные осям на составляющие параллельные им, используя правило параллелограмма. На рис.5 разложены силы , ,. При этом точка приложения результирующей и её составляющих должна быть одна и та же. Сами составляющие можно не обозначать, т. к. их модули легко выражаются через модуль результирующей и угол с одной из осей, который должен быть задан либо определен по другим заданным углам и показан на схеме. Например для силы Р 2 модуль горизонтальной составляющей равен , а вертикальной- .

Теперь можно составить три уравнения равновесия, а так как неизвестных реакций тоже три (,,), их значения легко находятся из этих уравнений. Знак у значения реакции, о чем говорилось выше, определяет правильность выбранных направлений реакций. Для схемы на рис. 5 уравнения проекций всех сил на оси х и y и уравнения моментов всех сил относительно точки А запишутся так:

Из первого уравнения находим значение R B , затем подставляем его со своим знаком в уравнения проекций и находим значения реакций Х А и У А.

В заключение отметим, что удобно уравнение моментов составлять относительно той точки, чтобы в нем оказалась одна неизвестная, т. е. чтобы эту точку пересекали две другие неизвестные реакции. Оси же удобно выбирать так, чтобы большее число сил оказались параллельны осям, что упрощает составление уравнений проекций.

Пример 4. Для заданной конструкции, состоящей из двух ломаных стержней, определить реакции опор и давление в промежуточном шарнире С .

Дано:

Схема конструкции (рис. 6).

P = 20 кН, G = 10 кН, М = 4 кНм, q = 2 кН/м, a =2 м, b =3 м, .

______________________________________

Определить реакции опор в точках А и В и давление в промежуточном шарнире С .

Рис. 6

Решение:

Рассмотрим равновесие всей конструкции (рис. 7).

К ней приложены:

активные силы ,, пара сил с моментом М , где

силы реакции:

, , , ,

Заменяют действие жесткого защемления;

Заменяет действие шарнирно-подвижной опоры А .

Расчетная схема

Рис. 7

Для полученной плоской произвольной системы сил можем составить три уравнения равновесия, а число неизвестных- четыре, , , .

Чтобы задача стала статически определимой, конструкцию расчленяем по внутренней связи - шарниру С и получаем еще две расчетные схемы (рис. 8, рис. 9).

Рис. 8Рис. 9

Заменяют действие тела АС на тело СВ , которое передается через шарнир С . Тело СВ передает свое действие на тело АС через тот же шарнир С , поэтому ; , .

Для трех расчетных схем в сумме можем составить девять уравнений равновесия, а число неизвестных – шесть , , , , , , то есть задача стала статически определима. Для решения задачи используем рис. 8, 9, а рис. 7 оставим для проверки.

Тело ВС (рис. 8)

Тело СА (рис. 9)

4)

5)

6)

Решаем систему шести уравнений с шестью неизвестными.

Проверка:

Реакции внешних опор в точках А и В найдены верно. Давление в шарнире С вычисляем по формуле

Ответ: , , , ,

Минусы означают, что направления инадо изменить на противоположные.

Пример 5. Конструкция состоит из двух частей. Установить, при каком способе соединения частей конструкции модуль реакции наименьший, и для этого варианта соединения определить реакции опор, а также соединения С .

Дано: = 9 кН; = 12 кН; = 26 кНм; = 4 кН/м.

Схема конструкции представлена на рис.10.

Рис.10

Решение:

1) Определение реакции опоры А при шарнирном соединении в точке С.

Рассмотрим систему уравновешивающихся сил, приложенных ко всей конструкции (рис.11). Составим уравнение моментов сил относительно точки B .

Рис.11

где кН.

После подстановки данных и вычислений уравнение (26) получает вид:

(2)

Второе уравнение с неизвестными и получим, рассмотрев систему уравновешивающихся сил, приложенных к части конструкции, расположенной левее шарнира С (рис. 12):

Рис. 12

Отсюда находим, что

кН.

Подставив найденное значение в уравнение (2) найдем значение :

Модуль реакции опоры А при шарнирном соединении в точке С равен:

2) Расчетная схема при соединении частей конструкции в точке С скользящей заделкой, показанной на рис. 13.

Рис. 13

Системы сил, показанные на рис. 12 и 13, ничем друг от друга не отличаются. Поэтому уравнение (2) остается в силе. Для получения второго уравнения рассмотрим систему уравновешивающихся сил, приложенных к части конструкции, расположенной левее скользящей заделки С (рис. 14).

Рис. 14

Составим уравнение равновесия:

и из уравнения (2) находим:

Следовательно, модуль реакции при скользящей заделке в шарнире С равен:

Итак, при соединении в точке С скользящей заделкой модуль реакции опоры А меньше, чем при шарнирном соединении ().

Найдем составляющие реакции опоры В и скользящей заделки.

Для левой от С части

,

Составляющие реакции опоры В и момент в скользящей заделке найдем из уравнений равновесия, составленных для правой от С части конструкции.

кН

Ответ: Результаты расчета приведены в таблице.

Момент, кНм

X A

Y A

R A

X C

X B

Y B

M C

Для схемы на рис.11

18,4

19,9

Для схемы на рис.13

14,36

11,09

17,35

28,8

28,8

12,0

17,2

Пример 6.

Дано: вариант расчетной схемы (рис.15).

Р 1 = 14 кН; Р 2 = 8 кН; q = 10 кн/м;М = 6 кНм; АВ = 0,5 м; ВС = 0,4 м; CD = 0,8 м; DE = 0,3 м; EF = 0,6 м.

Определить реакции в опорах А и F .

Решение . Используя рекомендации примера 3, расставляем реакции в опорах. Их получается четыре (, , , ). Так как в плоской статике для одного тела можно составить только три уравнения равновесия, то для определения реакций необходимо разбить конструкцию на отдельные твердые тела так, чтобы число уравнений и неизвестных совпало. В данном случае можно разбить на два тела АВС D и DEF . При этом в месте разбиения, т. е. в точке D для каждого из двух тел появляются дополнительные реакции, определяемые по виду, числу и направлению так же, как и для точек А и F . При этом по третьему закону Ньютона они равны по значению и противоположно направлены для каждого из тел. Поэтому их можно обозначить одинаковыми буквами (см. рис. 16).

Рис. 15

Далее, как и в примере 3, заменяем распределенную нагрузку q сосредоточенной силой и находим её модуль . Затем выбираем оси координат и раскладываем все силы на рис. 15 и 16 на составляющие параллельные осям. После этого составляем уравнения равновесия для каждого из тел. Всего их получается шесть и неизвестных реакций тоже шесть (, , , , , ), поэтому система уравнений имеет решение, и можно найти модули, а с учетом знака модуля и правильное направление этих реакций (см. пример 3).

Рис. 16. Разбиение конструкции на два тела в точке D , т. е. в месте их соединения скользящей заделкой (трение в ней не учитывается)

Целесообразно так выбирать последовательность составления уравнений, чтобы из каждого последующего можно было определить какую-то одну из искомых реакций. В нашем случае удобно начать с тела DEF , т. к. для него имеем меньше неизвестных. Первым составим уравнение проекций на ось х, из которого найдем R F . Далее составим уравнения проекций на оси у и найдем Y D , а затем уравнение моментов относительно точки F и определим M D . После этого переходим к телу ABCD . Для него первым можно составить уравнения моментов относительно точки А и найти М А, а затем последовательно из уравнений проекций на оси найти X A , Y A . Для второго тела необходимо учитывать свои реакции Y D , M D , взяв их из рис.16, но значения этих реакций уже будут известны из уравнений для первого тела.

При этом значения всех ранее определенных реакций подставляются в последующие уравнения со своим знаком. Таким образом, уравнения запишутся так:

для тела DEF

для тела ABCD

В некоторых вариантах задан коэффициент трения в какой-то точке, например . Это означает, что в этой точке необходимо учесть силу трения , где N A реакция плоскости в этой точке. При разбиении конструкции в точке, где учитывается сила трения, на каждое из двух тел действует своя сила трения и реакция плоскости (поверхности). Они попарно противоположно направлены и равны по значению (как и реакции на рис.16).

Реакция N всегда перпендикулярна плоскости возможного скольжения тел либо касательной к поверхностям в точке скольжения, если там нет плоскости. Сила трения же направлена вдоль этой касательной либо по плоскости против скорости возможного скольжения. Приведенная выше формула для силы трения справедлива для случая предельного равновесия, когда скольжение вот-вот начнется (при непредельном равновесии сила трения меньше этого значения, а определяется её величина из уравнений равновесия). Таким образом, в вариантах задания на предельное равновесие с учетом силы трения к уравнениям равновесия для одного из тел необходимо добавить еще одно уравнение . Там, где учитывается сопротивление качению и задан коэффициент сопротивления качения , добавляются уравнения равновесия колеса (рис.17).

При предельном равновесии

Рис.17

Из последних уравнений, зная G , , R , можно найти N , F тр, T для начала качения без проскальзывания.

В заключение отметим, что разбиение конструкции на отдельные тела проводят в том месте (точке), где имеет место наименьшее число реакций. Часто это невесомый трос или невесомый ненагруженный рычаг с шарнирами на концах, которые соединяют два тела (рис 18).

Рис. 18

Пример 7 . Жесткая рама ABCD (рис. 19) имеет в точке А неподвижную шарнирную опору, а в точке б - подвижную шарнирную опору на катках. Все действующие нагрузки и размеры показаны на рисунке.

Дано: F =25 кН, =60º , Р =18 кН, =75º , М= 50 кНм, = 30°, а= 0,5 м.

Определить: реакции в точках A и В , вызы­ваемое действующими нагрузками.

Рис. 19

Указания. Задача – на равновесие тела под действием произвольной плоской системы сил. При ее решении учесть, что натяжения обеих ветвей нити, перекинутой через блок, когда трением пренебрегают, будут одинаковыми. Уравнение моментов будет более простым (содержать меньше неизвестных), если составлять уравнение относительно точки, где пересекаются линии действия двух реакций связей. При вычислении момента силы F часто удобно разложить ее на составляющие F ’ и F ”, для которых плечи легко определяются, и воспользоваться теоремой Вариньона; тогда

Решение. 1. Рассмотрим равновесие пластины. Проведем коорди­натные оси ху и изобразим действующие на пластину силы: силу , пару сил с моментом М, натяжение троса (по модулю T = Р) и реакции связей (реакцию неподвижной шарнирной опоры A изображаем двумя ее составляющими, реакция шарнирной опоры на катках направлена перпендикулярно опорной плоскости).

2. Для полученной плоской системы сил составим три уравненияравновесия. При вычислении момента силы относительно точки A воспользуемся теоремой Вариньона, т.е. разложим силуна состав­ляющие F΄ , F ˝ (, ) и учтем, что по теореме Вариньона: Получим:

Подставив в составленные уравнения числовые значения заданных величин и решив эти уравнения, определим искомые реакции.

Ответ: X = -8,5кН; Y = -23,3кН; R = 7,3кН. Знаки указывают, что силы X A и Y A направлены противоположно силам, показан­ным на рис. 19.

Пример 8. Жесткая рама А BCD (рис.20) имеет в т. А неподвижную шарнирную опору, а т. D прикреплена к невесомому стержню. В т. С к раме привязан трос, перекинутый через блок и несущий на конце груз весом Р =20 кН. На раму действует пара силс моментомМ = 75 кНм и две силы F 1 =10 кН и F 2 =20 кН, составляющие со стержнями рамы углы =30 0 и =60 0 соответственно. При определении размеров рамы принять a =0,2 м. Определить реакции связей в точках А и D , вызванные действием нагрузки.

Дано : Р =20 кН, М =75 кНм , F 1 =10 кН, F 2 =20 кН, =30 0 , =60 0 , =60 0 , a = 0,2 м.

Определить: Х А, У А, R D .


Рис. 20

Указания. Задача – на равновесие тела под действием произвольной плоской системы сил. При ее решении следует учесть, что натяжения обеих ветвей нити, перекинутой через блок, когда трением пренебрегают, будут одинаковыми. Уравнение моментов будет более простым (содержать меньше неизвестных), если брать моменты относительно точки, где пересекаются линии действия двух реакций связей. При вычислении момента силы часто удобно разложить ее на составляющие и , для которых плечи легко определяются, и воспользоваться теоремой Вариньона; тогда

Решение.

1.Рассмотрим равновесие рамы. Проведем координатные оси х, у и изобразим действующие на раму силы: силы и , пару сил с моментом М, натяжение троса (по модулю Т = Р) и реакции связей (реакцию неподвижной шарнирной опоры А представляем в виде составляющих; стержневая опора препятствует перемещению т. D рамы в направлении вдоль стержня,поэтомувтомженаправлениибудетдействоватьи реакция опоры ).

2. Составим уравнения равновесия рамы. Для равновесия произвольной плоской системы сил достаточно, чтобы сумма проекций всех сил на каждую из двух координатных осей и алгебраическая сумма моментов всех сил относительно любой точки на плоскости равнялись нулю.

При вычислении моментов сил и относительно точки А воспользуемся теоремой Вариньона, т.е. разложим силы на составляющие , ; , и учтем, что .

Получим:

Подставив в составленные уравнения числовые значения заданных величин, и решив эти уравнения, определим искомые реакции.

Из уравнения (3) определяем R D =172,68 кН.

Из уравнения (1) определяем Х А = -195,52 кН.

Из уравнения (2) определяем У А = -81,34 кН.

Знаки «- » при величинах Х А и У А означают, что истинное направление этих реакций противоположно указанному на рисунке.

Проведемпроверку.

т. к. , то реакции опор найдены правильно.

Ответ: Х А = -195,52 кН, У А = -81,34 кН , R D = 172,68 кН.

Пример 9. Конструкция (рис. 21) состоит из жесткого угольника и стержня, которые в точке С свободно опираются друг о друга. Внешними связями, наложенными на конструкцию, являются: в точке А – жесткая заделка, в точке В – шарнир. На конструкцию действуют: пара сил с моментом М =80 кН·м, равномерно распределенная нагрузка интенсивности q =10 кН/м и силы: =15 кН и =25кН. При определении размеров конструкции принять а =0,35 м. Определить реакции связей в точках А, В и С.

Дано: М =80 кН·м, q =10 кН/м, F 1 =15 кН, F 2 =25 кН, а =0,35 м.

Определить: R A , M A , R B , R C .

Указания. Задача – на равновесие системы тел, находящихся под действием плоской системы сил. При ее решении можно или рассмотреть сначала равновесие всей системы, а затем равновесие одного из тел системы, изобразив его отдельно, или же сразу расчленить систему и рассмотреть равновесие каждого из тел в отдельности, учтя при этом закон о равенстве действия и противодействия. В задачах, где имеется жесткая заделка, следует учесть, что ее реакция представляется силой, модуль и направление которой неизвестны, и парой сил, момент которой также неизвестен.

Решение.

в ыполняем его в соответствии с изложенной выше методикой.

1. В данной задаче изучается равновесие системы, состоящей из жесткого угольника и стержня.

2. Выбираем систему координат ХАУ (см. рис. 21).

3. Активными нагрузками на данную систему являются: распределенная нагрузка интенсивностью q , , и момент М.


Рис.21

Изобразим на чертеже предполагаемые реакции связей. Так как жесткая заделка (в сечении А ) препятствует перемещению этого сечения стержня вдоль направлений Х и У , а также повороту стержня вокруг точки А , то в данном сечении в результате действия заделки на стержень возникают реакции , , . Шарнирная опора в точке В препятствует перемещению данной точки стержня вдоль направлений Х и У . Следовательно, в точке В возникают реакции , и . В точке С опоры стержня на угольник возникают реакция действия угольника на стержень и реакция действия стержня на угольник. Эти реакции направлены перпендикулярно плоскости угольника, причем R C = R ¢ С (согласно закону о равенстве действия и противодействия).

1. Задачу решаем способом расчленения. Рассмотрим сначала равновесие стержня ВС (рис. 21, б ). На стержень действуют реакции связей , , , сила и момент. Для полученной плоской системы сил можно составить три уравнения равновесия, при этом сумму моментов внешних сил и реакций связей удобнее считать относительно точки В :

;;(1)

;; (2)

Из уравнения (3) получим: R c =132,38 кН.

Из уравнения (1) получим: Х В = -12,99 кН.

Из уравнения (2) получим: У В = -139,88 кН.

Реакция шарнира в точке В:

Теперь рассмотрим равновесие угольника СА (рис. 21, в ). На угольник действуют: реакции связей , сила q . Заметим, что R / C = R C =132,38 кН. Для данной плоской системы сил можно составить три уравнения равновесия, при этом сумму моментов сил будем считать относительно точки С:

;;(4)

Из уравнения (4) получим: Х А = 17,75 кН.

Из уравнения (5) получим: У А = -143,13 кН.

Из уравнения (6) получим: М А = -91,53 кНм.

Задача решена.

А теперь для наглядного доказательства того, какое значение имеет правильный выбор точки, относительно которой составляется уравнение моментов, найдем сумму моментов всех сил относительно точки А (рис. 21, в ):

Из этого уравнения легко определить М А:

М А = -91,53 кНм.

Конечно, уравнение (6) дало то же значение М А, что и уравнение (7), но уравнение (7) короче и в него не входят неизвестные реакции Х А и У А, следовательно, им пользоваться удобнее.

Ответ: R A =144,22 кН, M A = -91,53 кНм, R B =140,48 кН,R C =R ¢ C =132,38 кН.

Пример 10 . На угольник АВС (), конец А которого жестко заделан, в точке С опирается стержень DE (рис. 22, а ). Стержень имеет в точке D неподвижную шарнирную опору, и к нему приложена сила , а к угольнику - равномерно распределенная на участке q и пара с моментом М .

Рис. 22

Д а н о: F =10 кН,М =5 кНм,q = 20 кН/м,а =0,2 м.

О п р е д е л и т ь: реакции в точках А , С , D , вызванные заданными нагрузками.

Указания. Задача - на равновесие системы тел, находящихся под действием плоской системы сил. При её решении можно или рассмотреть сначала равновесие всей системы в целом, а затем - равновесие одного из тел системы, изобразив его отдельно, или же сразу расчленить систему и рассмотреть равновесие каждого из тел в отдельности, учитывая при этом закон о равенстве действия и противодействия. В задачах, где имеется жесткая заделка, учесть, что её реакция представляется силой, модуль и направление которой неизвестны , и парой сил, момент которой тоже неизвестен.

Решение. 1. Для определения реакций расчленим систему и рассмотрим сначала равновесие стержня DE (рис. 22, б ). Проведем координатные оси XY и изобразим действующие на стержень силы: силу , реакцию , направленную перпендикулярно стержню и составляющие и реакции шарнира D . Для полученной плоской системы сил составляем три уравнения равновесия:

,;( 1)

Балками будем называть прямолинейные стержни, работающие на изгиб. В сопротивлении материалов термин «балка» значительно шире, чем в обычном употреблении этого слова: с точки зрения расчета на прочность, жесткость и устойчивость балкой является не только строительная балка, но также и вал, болт, ось железно­дорожного вагона, зуб шестерни и т. д.

Вначале ограничимся построением эпюр для простейшего случая изгиба балок, при котором все заданные нагрузки лежат в одной плоскости, называемой силовой (на рис. 4, а - плоскость П), при­чем эта плоскость совпадает с одной из главных плоскостей балки. Такой слу­чай будем называть плоским изгибом .

На расчетной схеме балку принято заменять ее осью (рис. 4, б). При этом все нагрузки, естественно, должны

Рис 4 быть приведены к оси балки и силовая плос­кость будет совпадать с плоскостью чер­тежа.

Как правило, балки имеют опорные устройства - опоры. Для расчета же их схематизи­руют в виде трех основных типов опор:

а) шарнирно-подвижная опора (рис. 5, а), в которой может возникать только одна составляющая реакции - , направленная вдоль опорного стерженька;

б) шарнирно-неподвижная опора (рис. 5, б), в которой могут возникать две составляющие - вертикальная реакция
и гори­зонтальная реакция

в) защемление (иначе жесткое защемление или заделка), где могут быть три составляющие - вертикальная
и горизонтальная
реакции и опорный момент Ма (рис. 5, в).

Все реакции и моменты считаются приложенными в точке А - центре тяжести опорного сечения.

Балка, показанная на рис. 6, с, называется простой , или однопролетной , или двухопорной , а расстояние l между опорами - пролетом .

Консолью называется балка, защемленная одним концом и не имеющая других опор (рис. 4, б), или часть балки, свешивающаяся за опоры (часть ВС на рис. 6, б; части АС и BD на рис. 6, е). Бан­ки, имеющие свешивающиеся части, называют консольными (рис. 6, б, в).

Для плоской системы сил можно составить три уравнения статики для определения неизвестных реакций.

Поэтому балка будет статически определимой, если число неизвестных опор­ных реакций не превышает трех; в противном случае балка стати­чески неопределима. Очевидно, что балки, изображенные на рис. 4 и 6, статически определимы.

Балка, изображенная на рис. 7, а , называется неразрезной и яв­ляется статически неопределимой, поскольку имеет пять неизвестных опорных реакций: три в опоре А и по одной в опорах В и С.

Поставив в сечениях балки шарниры, например в точках D и Е (рис. 7, б), получим статически определимую шарнирную балку, ибо каждый такой промежуточный шарнир к трем основным уравнениям статики прибавляет одно дополнительное уравнение: сумма моментов относительно центра шарнира от всех сил, расположен­ных по одну сторону от него, равна нулю .

Построение эпюр для статически неопределимых балок требует умения вычислять деформации, а поэтому ограничимся пока исклю­чительно статически определимыми балками.

Способы определения опорных реакций изучают в курсе теоре­тической механики. Поэтому здесь остановимся только на некоторых практических вопросах. Для этого рассмотрим простую балку (рис. 6, а).

1. Опоры обычно обозначают буквами А и В. Три неизвестные реакции находят из следующих уравнений равновесия:

а) сумма проекций всех сил на ось балки равна нулю:
откуда находят

б) сумма моментов всех сил относительно опорного шарнира А равна нулю:
откуда находят
.

в) сумма моментов всех сил относительно опорного шарнира В равна нулю:

откуда находят
.

2. Для контроля можно использовать или условие равенства нулю суммы проекций на вертикаль:

или условие равенства нулю суммы моментов относительно какой-либо точки С, отличной от А и В, т. е.

У

Условием
пользоваться проще, но оно дает надежную про­верку только в тех случаях, когда к балке не приложены сосредо­точенные моменты.

3. Перед составлением уравнений равновесия нужно выбрать (вообще говоря, произвольно) направления реакций и изобразить их на рисунке. Если в результате вычислений какая-либо реакция получается отрицательной, нужно изменить на рисунке ее направ­ление на обратное и в дальнейшем считать эту реакцию положи­тельной,

5. Если на балку действует распре деленная нагрузка, то для определения реакций ее заменяют равнодействующей, которая равна площади эпюры нагрузки и приложена в центре тя­жести этой эпюры.

Пример 5. Вычислить опорные реакции для балки, показанной на рис. 8.

Прежде всего находим равнодействующие Р 1 и Р 2 нагрузок, распределенных на участках АС н СВ:

;
.

Сила Р 1 приложена в центре тяжести прямоугольника, а Р 2 - в центре тяжести треугольника. Находим реакции: