Реакции в опорах. Определение реакций опор

  • Дата: 26.11.2023

Рассмотрен порядок решения задач на определение реакций опор балок. Приводится пример решения задачи и проверка правильности определения реакций. Приводится решение задачи вторым способом.

Содержание

Порядок решения задач на определение реакций опор балок

  • Выбираем систему координат. Можно ось x направить вдоль балки, ось y - вертикально вверх. Ось z будет направлена перпендикулярно плоскости рисунка, на нас. Центр системы координат можно выбрать в одной из точек опор балки.
  • Если есть распределенная нагрузка, то заменяем ее равнодействующей силой. Величина этой силы равна площади эпюры. Точка приложения силы находится в центре тяжести эпюры. Так если нагрузка q равномерно распределена на отрезке AB , то ее равнодействующая имеет величину Q = q·| AB| и приложена посередине отрезка AB .
  • Составляем уравнения равновесия для действующих сил. В общем случае они имеют вид:
    .
    Спроектируем это векторное уравнение на оси координат. Тогда сумма проекций сил на каждую из осей координат равна нулю:
    (1) .
    Находим проекции сил на оси координат и составляем уравнения (1). Для плоской системы сил, последнее уравнение, с проекциями на ось z , не используется.
  • Составляем уравнения равновесия для моментов сил. Сумма моментов сил относительно произвольной оси A′A′′ равна нулю:
    (2) .
    Чтобы составить это уравнение, мы должны выбрать ось, относительно которой вычисляются моменты. Ось лучше выбрать так, чтобы сделать вычисления более простыми. Чаще всего оси выбирают так, чтобы они проходили через точки опор балки, перпендикулярно плоскости рисунка.
  • Решаем уравнения и получаем значения реакций опор.
  • Делаем проверку результата. В качестве проверки можно выбрать какую-нибудь ось, перпендикулярную плоскости рисунка, и относительно нее подсчитать сумму моментов сил, действующих на балку, включая найденные реакции опор. Сумма моментов должна равняться нулю.

Пример решения задачи на определение реакций опор балки

Условие задачи.

Жесткая балка, линейные размеры которой указаны на рисунке 1, закреплена в точках А и В. На балку действуют пара сил с моментом М, равномерно распределенная нагрузка интенсивностью q и две силы P и G, место приложения которых показано на рисунке.
Определить реакции опор балки в точках A и В, вызываемые указанными нагрузками.

Дано:
P = 20,2 Н ; G = 22,6 Н ; q = 2 Н/м ; M = 42,8 Н·м ; a = 1,3 м ; b = 3,9 м ; α = 45° ;

Решение задачи

Проводим оси x и y системы координат. Начало системы координат поместим в точку A . Ось x направим горизонтально, вдоль балки. Ось y - вертикально. Ось z перпендикулярна плоскости рисунка и направлена на нас. На рисунке она не указана.

Силы, действующие на балку.

Отбрасываем опоры и заменяем их силами реакций.
В шарнире A , разложим силу реакции на составляющие и вдоль осей координат.
Реакция , в подвижной опоре на катках, направлена вертикально. Предполагаемые направления реакций опор выбираем по своему усмотрению, наугад. Если ошибемся с направлением реакции, то получим отрицательное значение, что будет говорить о том, что соответствующая сила реакции направлена в противоположную сторону.

Заменим равномерно распределенную нагрузку q равнодействующей . Абсолютное значение равнодействующей равно площади эпюры:
Н .
Точка приложения равнодействующей находится в центре тяжести эпюры. Поскольку эпюра представляет собой прямоугольник, то ее центр тяжести находится в точке C - посередине отрезка AD :
AC = CD = b/2 = 1,95 м .

Уравнения равновесия для сил

Определяем проекции сил на оси координат.

Разложим силу на составляющие вдоль координатных осей:
.
Абсолютные значения составляющих:
.
Вектор параллелен оси x и направлен в противоположную от нее сторону. Вектор параллелен оси y и также направлен в противоположную сторону. Поэтому проекции силы на оси координат имеют следующие значения:
.

Остальные силы параллельны осям координат. Поэтому они имеют следующие проекции:
;
;
;
;
.

Составляем уравнения равновесия для сил.
Сумма проекций всех сил на ось x равна нулю:
;
;
;
(П1) .

Сумма проекций всех сил на ось y равна нулю:
;
;
;
(П2) .

Уравнения равновесия для моментов

Итак, мы уже составили два уравнения для сил: (П1) и (П2). Но в них есть три неизвестные величины: , и . Чтобы их определить, нам нужно составить еще одно уравнение.

Составим уравнение равновесия для моментов сил. Для этого нам нужно выбрать ось, относительно которой мы будем вычислять моменты. В качестве такой оси возьмем ось, проходящую через точку A , перпендикулярно плоскости рисунка. За положительное направление выберем то, которое направлено на нас. Тогда, по правилу правого винта, положительным направлением закручивания будет направление против часовой стрелки.

Находим моменты сил относительно выбранной оси.
Силы , и пересекают ось. Поэтому их моменты равны нулю:
; ; .

Сила перпендикулярна плечу AB . Ее момент:
.
Поскольку, относительно оси A , сила направлена против часовой стрелки, то ее момент положительный.

Сила перпендикулярна плечу AK . Поскольку, относительно оси A , эта сила направлена по часовой стрелки, то ее момент имеет отрицательное значение:
.

Аналогичным способом находим моменты остальных сил:
;
.
Момент от пары сил M не зависит от точек приложения сил, входящих в пару:
.

Составляем уравнение равновесия. Сумма моментов сил относительно оси A равна нулю:
;

;
;
(П3) .

Решение уравнений равновесия

Итак, для трех неизвестных величин, мы получили три уравнения:
(П1) .
(П2) .
(П3) .

Решаем эти уравнения. Вычисляем расстояния.
м;
м;
м;
м.

Из уравнения (П1) находим:
Н.
Из уравнения (П3) находим:

Н.
Из уравнения (П2) имеем:
Н.
Абсолютное значение реакции опоры в точке A :
Н.

Проверка правильности решения

Чтобы проверить, правильно ли мы определили реакции опор балки, найдем сумму моментов сил относительно другой оси. Если мы нашли реакции правильно, то она должна равняться нулю.

Возьмем ось, проходящую через точку E . Вычисляем сумму моментов сил относительно этой оси:

.
Найдем погрешность вычисления суммы моментов. Найденные силы мы округлили до двух знаков после запятой. То есть погрешность определения реакций опор составляет 0,01 Н . Расстояния, по порядку величины, примерно равны 10 м. Тогда погрешность вычисления суммы моментов составляет около 10·0,01 = 0,1 Нм . Мы получили значение -0,03 Нм . Эта величина отличается от нуля не более, чем на величину погрешности. То есть, с учетом погрешности вычислений, сумма моментов относительно другой оси равна нулю. Значит решение правильное, силы реакций найдены верно.

Второй способ решения

Первым способом мы составили два уравнения для сил и одно - для моментов. Задачу можно решить другим способом, составив два уравнения для моментов и одно для сил.

Воспользуемся тем, что сумма моментов сил равна нулю относительно любой оси. Возьмем вторую ось, которая проходит через точку B перпендикулярно плоскости рисунка. Сумма моментов сил относительно этой равна нулю:
.
Вычисляем моменты сил относительно оси B .
; ; ;
;
;
;
;
.

Сумма моментов сил относительно оси B равна нулю:
;

;
;
(П4) ;

Итак, вторым способом, мы также имеем три уравнения:
(П1) .
(П3) ;
(П4) .

Здесь каждое уравнение содержит только одну неизвестную величину. Реакции и определяются из тех же уравнений, что и ранее. Находим силу из уравнения (П4):

Н.

Значение реакции совпало со значением, полученным первым способом из уравнения (П2).

Расчет выполняется по следующей методике:

1. Заменяем распределенную нагрузку ее равнодействующей, которая является сосредоточенной силой. Для равномерно распределенной нагрузки равнодействующая равна произведению интенсивности нагрузки q на длину участка L, на котором она действует: Fq = q*L.

2. Обозначаем опоры. Общепринято их обозначать буквами А и В. Простая балка имеет одну шарнирно-неподвижную и одну шарнирно-подвижную опоры.

3. Освобождаемся от опор и заменяем их действие на балку реакциями.
Реакции опор при такой нагрузке будут только вертикальными.

4. Составляем уравнения равновесия вида:
M A = 0; M B = 0,
Моментом силы относительно точки называется произведение этой силы на плечо - кратчайшее расстояние от этой точки приложения силы (в общем случае - до линии действия силы).

5. Выполним проверку решения. Для этого составим уравнение равновесия: Y = 0,
Если оно удовлетворено, то реакции найдены правильно, а если нет, но в решении допущена ошибка.

6. Строим эпюру поперечных сил Q x . Для этого определяем значения поперечных сил в характерных точках. Напомним, что поперечная сила в сечении равна сумме проекций всех сил, расположенных только слева или только справа от рассматриваемого сечения, на ось, перпендикулярную оси элемента. Силу, расположенную слева от рассматриваемого сечения и направленную вверх, считают положительной (со знаком «плюс»), а направленную вниз - отрицательной (со знаком «минус»). Для правой части балки - наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных сил, в том числе в точках приложения опорных реакций, необходимо определить два значения поперечной силы: чуть левее рассматриваемой точки и чуть правее ее. Поперечные силы в этих сечениях обозначаются соответственно Q лев и Q прав.
Найденные значения поперечных сил в характерных точках откладываются в некотором масштабе от нулевой линии. Эти значения соединяются прямыми линиями по следующим правилам:
а) если к участку балки нет распределенной нагрузки, то под этим участком значения поперечных сил соединяются прямой линией, параллельной нулевой линии;
б) если на участке балки приложена распределенная нагрузка, то под этим участком значения поперечных сил соединяются прямой, наклонной к нулевой линии. Она может пересекать или не пересекать нулевую линию.
Соединив все значения поперечных сил по указанным правилам, получим график изменения поперечных сил по длине балки. Такой график называется эпюрой Q x .

7. Строим эпюру изгибающих моментов М x . Для этого определяем изгибающие моменты в характерных сечениях. Напомним, что изгибающий момент в рассматриваемом сечении равен сумме моментов всех сил (распределенных, сосредоточенных, в том числе и опорных реакций, а также внешних сосредоточенных моментов), расположенных только слева или только справа от этого сечения. Если любое из перечисленных силовых воздействий стремится повернуть левую часть балки по часовой стрелке, то оно считается положительным (со знаком «плюс»), если против - отрицательным (со знаком «минус»), а для правой части наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных моментов, необходимо определить два значения изгибающего момента: чуть левее рассматриваемой точки и чуть правее ее. Изгибающие моменты в этих точках обозначаются соответственно М лев и М прав. В точках приложения сил определяется одно значение изгибающего момента.
Полученные значения откладываются в некотором масштабе от нулевой линии. Эти значения соединяются в соответствии со следующими правилами:
а) если на участке балки нет распределенной нагрузки, то под этим участком балки два соседних значения изгибающих моментов соединяются прямой линией;
б) если к участку балки приложена распределенная нагрузка, то под этим участком значения изгибающих моментов для двух соседних точек соединяются по параболе.

Пример1.

Примеры выполнения задания (при действии на балку равномерно распределенной нагрузки и сосредоточенных сил и моментов).

Разберем на конкретных примерах построение эпюр для балок, находящихся под действием равномерно распределенной нагрузки и сосредоточенных сил и моментов, расположенных в одной плоскости.

Построить эпюры поперечных сил и изгибающих моментов для боевой оси круглого поперечного сечения ГМ-30, изображенного на рис.1

Дано:

[σ]=21000 kH/м 2

Определить из расчета на прочность размеры поперечного сечения оси.

Решение:

Отбрасывают опоры А и В, а их действие на балку заменяют реакциями опор R A и R B .

Направление опорных реакций выбирают положительным, т.е. направленным вверх. Если в результате расчета значение какой-либо реакции получается отрицательным, то это означает, что в действительности ее направление противоположно предварительно принятому, для чего необходимо поменять направление этой реакции и считать ее далее положительной.

Так как балка под действием приложенных к ней сил и моментов находится в равновесии, то для нее справедливы следующие три уравнения статики:

1 уравнение: :

где – равнодействующая распределенной нагрузки интенсивностью на длине балки « », - плечо этой равнодействующей относительно точки А.

Из уравнения 1 имеем:

рис.1 Расчетная схема балки и эпюры и

2 уравнение : (2)

3 уравнение – сумма моментов всех сил относительно точки В – используют для проверки правильности найденных значений реакций.

Подставив значения получим , т.е. составленное уравнение удовлетворяется, это указывает на правильность определения опорных реакций:

Примечание:

3. Момент считается положительным, если направлен против часовой стрелки, и отрицательным, если направлен по часовой стрелке.

4. Сила положительна, если направлена по оси «Y» вверх, и отрицательна, если направлена вниз.

3.3.1.2. Построение эпюр и .

Балку разбивают на участки I и II и для каждого участка составляют аналитические зависимости изменения внутренних силовых факторов, с помощью которых производят построение эпюр и .

На участке балки на расстоянии от левого конца проводят сечение и рассматривают равновесие левой части балки. Составляют уравнение для поперечной силы и изгибающего момента :



Выражение для силы представляет собой уравнение прямой, параллельной оси абсцисс. Зависимость от линейная, поэтому для построения эпюры на участке I достаточно определить величины при двух значениях аргумента :

1) при (в начале участка I);

2) при м (в конце участка I);

По полученным значениям и на рис.1 строят эпюры и для первого участка балки.

Примечание:

1. Знак «плюс» перед значением реакций свидетельствует о том, что принятое направление реакций соответствует их действительному направлению.

2. В случае отрицательного значения реакции необходимо изменять направление этой реакции на расчетной схеме и далее принимать ее значение положительным.

На участке II балки на расстоянии от правого конца балки проводят поперечное сечение и рассматривают равновесие отсечённой правой части балки.

Уравнение для силы на II участке представляет собой уравнение прямой линии, наклонённой к оси абсцисс. Для её построения достаточно знать координаты двух точек (обычно выбирают координаты границ участка).

Проводим через две полученные точки прямую поперечной силы (рис.1), так как прямая эпюры поперечной силы пересекает ось , то в точке пересечения на эпюре изгибающих моментов должен быть экстремум (). Находят координату точки пересечения . Для этого приравнивают выражение поперечной силы (4 ) к нулю, т.е.: .

3.3.1.3. Определение диаметра поперечного сечения .

Для определения диаметра балки используют условие прочности при изгибе , где – осевой момент сопротивления сечения изгибу.

Таким образом определены размеры поперечного сечения оси, исходя из построенных эпюр и .

Задание

Задана горизонтальная двух опорная балка. Балка нагружена активными силами: сосредоточенной F , распределенной силой интенсивностью q и парой сил с моментом М (табл.2.1 и рис 2.6).

Цель работы построить расчётную схему балки, составить уравнения равновесия балки, определить реакции ее опор и выявить наиболее нагруженную опору.

Теоретическое обоснование

Во многих машинах и сооружениях встречаются конструктивные элементы, предназначенные преимущественно для восприятия нагрузок, направленных перпендикулярно их оси. Расчетные схемы таких элементов (валы, части металлоконструкции и др.) могут быть представлены балкой. Балки имеют опорные устройства для передачи усилий и сопряжения с другими элементами.

Основными типами опор балок являются шарнирно – подвижная, шарнирно – неподвижная опоры и жесткая заделка.

Шарнирно – подвижная опора (рис.2.1,а) допускает поворот балки вокруг оси шарнира и линейное перемещение на незначительное расстояние параллельно опорной плоскости. Точкой приложения опорной реакции является центр шарнира. Направление реакции R – перпендикуляр к опорной поверхности.

Шарнирно – неподвижная опора (рис.2.1,6) допускает только поворот балки вокруг оси шарнира. Точкой приложения являются также центр шарнира. Направления реакции здесь неизвестно, оно зависит от нагрузки, приложенной к балке. Поэтому для такой опоры определяются две неизвестные – взаимно перпендикулярные составляющие R x и R y опорной реакции.

Жесткая заделка (защемление) (рис.2.1,в) не допускает ни линейных перемещений, ни поворота. Неизвестными в данном случае являются не только величина, но и её точка приложения. Таким образом, для определения опорной реакции необходимо найти три неизвестные: составляющие R x и R y по осям координат и реактивный момент MR относительно центра тяжести опорного сечения балки.

А б в

Рис.2.1

Равновесие балки под действием любой системы заданных сил, расположенных в одной плоскости, может быть обеспечено одной жёсткой заделкой или двумя опорами – подвижной и неподвижной. Балки называются соответственно консольными (рис.2.2,а) или двух опорными (рис.2.2,б)

Рис.2.2

На балку действуют заданные силы и пары сил. Силы по способу приложения делятся на распределенные и сосредоточенные. Распределенные нагрузки задаются интенсивно q, Н/м и длиной 1, м. равномерно распределенные нагрузки условно изображаются в виде прямоугольника, в котором параллельные стрелки указывают, в какую сторону действует нагрузка (рис.2.3). В задачах статики равномерно – распределенную нагрузку можно заменять равнодействующей сосредоточенной силой Q, численно равной произведению q * 1, приложенной посредине длины и направленной в сторону действия q.


Рис.2.3 Рис. 2.4

Сосредоточенные нагрузки приложены на сравнительно небольшой длине, поэтому считается, что они приложены в точке. Если сосредоточенная сила приложена под углом к балке, то для определения реакции опор удобно разложить её на две составляющие – F x = Fcos α и F y =F sin α (рис.2.4).

Реакции опор балки определяются из условий равновесия плоской системы произвольно расположенных сил. Для плоской системы можно составить три независимых условия равновесия:

∑F ix = 0; ∑F iy = 0; ∑M io = 0 или

∑М ia = 0; ∑M iB = 0; ∑M iC = 0 или } (2.1)

∑M iA = 0; ∑M iB = 0; ∑F ix = 0.

Где О, А,В, С – центры моментов.

Рационально выбрать такие уравнения равновесия, в каждое из которых входила бы по одной неизвестной реакции.

Порядок выполнения работы

1. В соответствии с заданием изобразить балку и действующие заданные силы.

Выбрать расположение координатных осей: совместить ось х с балкой, а ось у направить перпендикулярно оси х.

1. Произвести необходимые преобразования: силу, наклоненную к оси балки под углом а, заменить двумя взаимно перпендикулярными составляющими, а равномерно распределенную нагрузку – её равнодействующей.

2. Освободить балку от опор, заменив их действие реакциями опор, направленными вдоль осей координат.

3. Составить уравнения равновесия балки, чтобы решением каждого из трёх уравнений было определение одной из неизвестных реакций опор.

4. Проверить правильность определения реакций опор по уравнению, которое не было использовано для решения задач.

5. Сделать вывод о наиболее нагруженной опоре.

6. Ответить на контрольные вопросы.

Контрольные вопросы

1.Сколько независимых уравнений равновесия можно составить для плоской системы параллельных сил?

2.Какие составляющие реакции опор балок возникают в шарнирно – подвижной, шарнирно – неподвижной опорах и жёсткой заделке?

3.Какую точку целесообразно выбрать в качестве центра момента при определении реакций опор?

4.Какая система является статически неопределимой?

Пример выполнения

1.Задание:

q = 5 H/м, F = 25 H, M = 2 H*м, α = 60°

2.Преобразование заданных сил:

F x = F cos α = 25cos 60° = 12.500H, F y = F sinα = 25 sin60° = 21.625H

Q = q*1 = 5*6 =30 H.

Рис.2.5

3.Составим расчётную схему (рис.2.5)

4.Уравнения равновесия и определение реакций опор:

а) ∑M ia = 0; -Q *3 – F y * 7.5+ R B * 8.5 – M = 0;

б) ∑M iB =0: - R Ay *8.5 + Q *5.5 + F y *1 – M = 0:

в) ∑F ix =0: R Ax + F x =0: R Ax = - F x = - 12.500H.

5.Проверка:

∑F iy = 0; R Ay = Q – F y + R B = 0; 21.724 – 30 – 21.651 + 29.927 = 0; 0 = 0

Наиболее нагруженной является опора В – R B =29.927 Н. Нагрузка на опору А – R A =

Литература:

Таблица 2.1

№ варианта № схемы на рис. 2.6 q , Н/м F, Н М, Н м , град
4,5
2,5
4,5
3,5
6,5
1,5
0,5

Балки предназначены для восприятия поперечных нагрузок. По способу приложения нагрузки делятся на сосредоточенные (действуют на точку) и распределенные (действуют на значительную площадь или длину).

q - интенсивность нагрузки, кн/м

G = q L – равнодействующая распределенной нагрузки

Балки имеют опорные устройства для сопряжения их с другими элементами и передачи на них усилий. Применяются следующие виды опор:

· Шарнирно-подвижная

Эта опора допускает поворот вокруг оси и линейное перемещение параллельно опорной плоскости. Реакция направлена перпендикулярно опорной поверхности.

· Шарнирно-неподвижная

Эта опора допускает поворот вокруг оси, но не допускает никаких линейных перемещений. Направление и значение опорной реакции неизвестно, поэтому заменяется двумя составляющими R A у и R A х вдоль осей координат.

· Жесткая заделка (защемление)

Опора не допускает перемещений и поворотов. Неизвестны не только направление и значение опорной реакции, но и точка её приложения. Поэтому заделку заменяют двумя составляющими R A у, R A х и моментом М А. Для определения этих неизвестных удобно использовать систему уравнений.

∑ m А (F к)= 0

Для контроля правильности решения используется дополнительное уравнение моментов относительно любой точки на консольной балке, например точка В ∑ m В (F к)= 0

Пример. Определить опорные реакции жесткой заделки консольной балки длиной 8 метров, на конце которой подвешен груз Р = 1 кн. Сила тяжести балки G = 0,4 кн приложена посередине балки.

Освобождаем балку от связей, т.е отбрасываем заделку и заменяем её действие реакциями. Выбираем координатные оси и составляем уравнения равновесия.

∑ F kx = 0 R A х = 0

∑ F k у = 0 R A у – G – P = 0

∑ m А (F к)= 0 - M A + G L / 2 + P L = 0

Решая уравнения, получим R A у = G + P = 0,4 + 1 = 1,4 кн

M A = G L / 2 + P L = 0,4 . 4 + 1 . 8 = 9,6 кн. м

Проверяем полученные значения реакций:

∑ m в (F к)= 0 - M A + R A у L - G L / 2 = 0

9,6 + 1,4 . 8 – 0,4 . 4 = 0

11,2 + 11,2 = 0 реакции найдены верно.

Для балок расположенных на двух шарнирных опорах удобнее определять опорные реакции по 2 системе уравнений, поскольку момент силы на опоре равен нулю и в уравнении остается одна неизвестная сила.

∑ m А (F к)= 0

∑ m В (F k)= 0

Для контроля правильности решения используется дополнительное уравнение ∑ F k у = 0


1) Освобождаем балку от опор, а их действие заменяем опорными реакциями;

Рассмотрим несколько примеров.

Пример 3.1. Определить опорные реакции консольной балки (рис. 3.3).

Решение. Реакцию заделки представляем в виде двух сил Az и Ay , направленных, как указано на чертеже, и реактивного момента MA .

Составляем уравнение равновесия балки.

1. Приравняем нулю сумму проекций на ось z всех сил, действующих на балку. Получаем Az = 0. При отсутствии горизонтальной нагрузки горизонтальная составляющая реакции равна нулю.

2. То же, на ось y: сумма сил равна нулю. Равномерно распределенную нагрузку q заменяем равнодействующей qaз, приложенной посредине участка aз:

Ay - F1 - qaз = 0,

Ay = F1 + qaз.

Вертикальная составляющая реакции в консольной балке равна сумме сил, приложенных к балке.

3. Составляем третье уравнение равновесия. Приравняем нулю сумму моментов всех сил относительно какой-нибудь точки, например относительно точки А:


Знак минус показывает, что принятое вначале направление реактивного момента следует изменить на обратное. Итак, реактивный момент в заделке равен сумме моментов внешних сил относительно заделки.

Пример 3.2. Определить опорные реакции двухопорной балки (рис. 3.4). Такие балки обычно называют простыми.

Решение. Так как горизонтальная нагрузка отсутствует, то Az = 0

Вместо второго уравнения можно было использовать условие того, что сумма сил по оси Y равна нулю, которое ы данном случае следует применить для проверки решения:
25 - 40 - 40 + 55 = 0, т.е. тождество.

Пример 3.3. Определить реакции опор балки ломаного очертания (рис. 3.5).

Решение.

т.е. реакция Ay направлена не вверх, а вниз. Для проверки правильности решения можно использовать, например, условие того, что сумма моментов относительно точки В равна нулю.

Полезные ресурсы по теме "Определение опорных реакций"

1. , которая выдаст расписанное решение любой балки. .
Кроме построения эпюр эта программа так же подбирает профиль сечения по условию прочности на изгиб, считает прогибы и углы поворота в балке.

2. , которая строит 4 вида эпюр и рассчитывает реакции для любых балок (даже для статически неопределимых).

5 семестр. Основы функционирования машин и их элементов в системе промышленного сервиса

Теоретическая механика это наука, в которой изучаются общие законы механического движения и механического взаимодействия материальных тел.

Раздел 1.Статика- это раздел механики, в котором изучаются методы преобразования систем сил в эквивалентные системы и устанавливаются условия равновесия сил, приложенных к твердому телу.

Сила - это мера механического взаимодействия тел, определяющая интенсивность и направление этого взаимодействия. Сила определяется тремя элементами: числовым значением (модулем), направлением и точкой приложения. Сила изображается вектором.

Реакцией связи называется сила или система сил, выражающая механическое действие связи на тело.Одним из основных положений механики является пpuнцип освобождаемости т тел от связей, согласно которому несвободное твердое тело можно рассматривать как свободное, на которое кроме задаваемых сил действуют реакции связей.

Задача 1. Определение реакций опор балки под действием плоской произвольной системы сил

Определить реакции R A и R B опор балки, размеры и нагрузки которой показаны на рис. 1,а (поменять значения F и М).


Решение. 1. Составление расчетной схемы . Объект равновесия – балка АС . Активные силы: F = 3 к H , пара сил с M = 4 к H ∙м = 1 кН/м , которую заменяем одной сосредоточенной силой R q = q 1= 13 = 3 к H ; приложенной к точке D на расстоянии 1,5 м от края консоли. Применяя принцип освобождаемости от связей изобразим в точках А и В реакции. На балку действует плоская произвольная система сил, в которой три неизвестных реакции

и .

Ось х направим вдоль горизонтальной оси балки вправо, а ось у - вертикально вверх (рис.1,а).

2. Условия равновесия:


.

3. Составление уравнений равновесия:

4. Определение искомых величин, проверка правильности решения и анализ полученных результатов .

Решая систему уравнений (1 – 3), определяем неизвестные реакции

из (2): кН .

Величина реакции R A х имеет отрицательный знак, значит направлена не так, как показано на рисунке, а в противоположную сторону.

Для проверки правильности решения составим уравнение суммы моментов относительно точки Е.

Подставив в это уравнение значения входящих в него величин, получим:

0,58 ∙ 1 – 4 + 5,02 ∙ 3 – 3 ∙ 3,5 = 0.

Уравнение удовлетворяется тождественно, что подтверждает правильность решения задачи.

Задача 2.Определение реакций опор составной конструкции

Конструкция состоит из двух тел, соединенных шарнирно в точке С . Тело АС закреплено с помощью заделки, тело ВС имеет шарнирно-подвижную (скользящую) опору (рис. 1). На тела системы действуют распределенная по линейному закону сила с максималь­ной интенсивностью q тах = 2 кН/м , сила F = 4 кН под углом α = 30 o и пара сил с моментом М = 3 кНм . Геомет­рические размеры указаны в метрах. Определить реакции опор и усилие, пе­редаваемое через шарнир. Вес элемен­тов конструкции не учитывать.

Рис. 1 Рис. 2

Решение .Если рассмотреть рав­новесие всей конструкции в целом, учитывая, что реакция заделки состо­ит из силы неизвестного направления и пары, а реакция скользящей опоры перпендикулярна опорной поверхно­сти, то расчетная схема будет иметь вид, представленный на рис. 2.

Здесь равнодействующая распреде­ленной нагрузки


расположена на расстоянии двух метров (1/3 длины AD ) от точки А ; М А - неизвестный момент заделки.

В данной системе сил четыре неизвестных реакции (Х А , Y A , M A , R B ), и их нельзя определить из трех уравне­ний равновесия плоской произвольной системы сил.

Поэтому расчленим систему на отдельные тела по шарниру (рис.3).

Силу, приложенную в шарнире, следует при этом учи­тывать лишь на одном теле (любом из них). Уравнения для тела ВС :



Отсюда Х С = – 1 кН ; У С = 0; R B = 1 кН .

Уравнения для тела АС :

Здесь при вычислении момента силы F относительно точки А использована теорема Вариньона: сила F разло­жена на составляющие F cos α и F sin α и определена сум­ма их моментов.

Из последней системы уравнений находим:

Х А = – 1,54 кН ; У А = 2 кН ; М А = – 10,8 кНм .

Для проверки полученного решения составим уравнение моментов сил для всей конструкции относительно точки D (рис. 2):

Вывод: проверка показала, что модули реакций определены верно. Знак минус у реакций говорит о том, что реально они направлены в противоположные стороны.